

Final Architecture and Traceability Report

A UML diagram showing our final architecture design can be found ​here​.

A full traceability report can be found ​here​.

Fortunately, the game we inherited was an extension of our original game from assessment
2. This allowed us to expand on our architecture easily as the previous team had kept the
overall architecture design. Due to the somewhat modular nature of our project, there was
no issues in implementing additional requirements on top of the inherited code caused by
the handover. As such, some of the classes implemented by the previous team
(​MinigameManager​, ​Bird​ and ​MovingPillars​) were untouched. Similarly, many of the existing
classes were not changed (see traceability report for changes made during ASM4), which
was fantastic in speeding up development as even though our UML diagram was growing
extremely large, we were able to focus on a small area of it during this task.

Architecture Justification
Our main goal with assessment 4 was to implement the additional requirements quickly and
efficiently in order to maximize the time we could spend on improving the already
implemented systems. We decided that the best way for us to meet this goal was to extend
the existing architecture in the same manner as previous. This meant that the additional
requirements would be implemented in their own classes and subsequently linked into the
existing systems, usually controlled by the ​Game ​class. This led to us updating the ​Unit
class and implementing a new class ​PunishmentCard​.

Our UML diagram was a very useful tool in helping us develop our game quickly and
efficiently. Being able to map out relations between classes ahead of time allowed us to stay
focused when unexpected coding challenges had occurred.

New Features
As outlined by the assessment 4 brief, the additional features we had to implement were a
postgraduate “leveling” system and also a punishment card system. Luckily, as part of our
previous implementation, a leveling system was already in place that could easily be
modified to meet the postgraduate criteria. We also had previously created a punishment
card system during assessment 3, allowing us to very quickly implement a similar system.

Postgraduate System
Previously, we had implemented a system in which a unit can level up, ranging from leveling
1 to 5. Since this system allowed the unit to become stronger over time, we decided that it
already accurately reflected what we would want from a postgraduate “unit”. As such, we
decided that when a unit reached level 5, it would become a postgraduate, thus being a
stronger overall unit to have.

Punishment Card System
The punishment card system presented some challenges, but as we already had previous
experience with a similar system, we were prepared for many of the issues that may have
arisen. We decided that punishment cards should appear on the map and be collectable if a

https://sepr-team-margaret.github.io/content/ArchD4.svg
https://docs.google.com/spreadsheets/d/1s0Fh1ty4dXZ7Vb2xIcwNgl3QX22hb57tFK5fKbyUCyA/edit#gid=0

unit enters the corresponding sector. This would add a punishment card to the collecting
players “hand”. The player would be able to activate the punishment card during their turn,
with a different effect depending on the card they picked up. However, some of our
punishment cards effects required the player to be able to select a unit or player for the
effect to apply to. This led to a new challenge in that our game had previously had no game
state to accommodate such a selection, we had to rework some of the previous game state
code in order to add an additional card selection state.

Extra Features
As well as the required new features, we set ourselves an overall task of improving the look
of the game, the “pseudo-requirements” we set were unit names, a complete overhaul of unit
appearance, a fight animation and we also decided to add a sound system to our game.

For the sounds, a new class ​SoundManager ​was created. Sounds had to be added during
key interactions, so ​SoundManager​ contains methods to play specific sounds which are then
called by other object interactions, such a button presses or dialog events.

Unit appearance was done by adding an additional component to each ​Unit​, a ​UnitSprite​,
that held all of the data referring to the unit’s appearance and the unit’s name. This system
pulled from a pool of forenames and surnames as well as a pool of doodle styled model
parts (hat, head and body), it then assembles and outputs the unit from the respective parts
alongside the full name.

Lastly, the fight animation was implemented as a series of videos attached to a gameObject
that were called within the ​Sector​ Conflict method.

We decided to make changes to the units appearance as we wanted to more accurately
capture the overall “doodle” style. We also wanted to try and create a uniqueness to each
unit, thus we decided to create a system that would randomly generate both the unit’s name
and appearance. Despite not being a core requirement, we wanted to include this aspect of
the game as it would not only further solidify upon our theme, but it would also bring a sense
of personalisation and attachment to the game and your units/team. Building upon this, the
fight animation was implemented as we wanted our game to be more interesting than what
the basic requirements detailed and also because conflicts previously had felt quick and
anti-climatic.

Our overall goal with the extra changes was to create an attachment between the users and
their “player” identity. We wanted to make the user more immersed and invested in the
gameplay and hopefully by extension, increase the amount of fun they were having.

