

Architecture

This document will cover an abstract representation of the proposed architecture as well as a

systematic justification for the architecture, explaining and justifying the individual components within
it. ​The following UML diagram describes the game in a way which does not constrain the architecture
to​ ​one​ ​specific​ ​implementation:

As an extension, we decided not to include audio and UI elements, although they are
expected​ ​to​ ​exist​ ​in​ ​our​ ​implementation.

We decided to create our abstract architecture using a UML 2.0 format. UML 2.0 was easy to
learn as we had access to useful lectures and documentation [1]. We found that UML 2.0 allowed us
to visualise our architecture in a clear yet concise manner. In order to design our UML diagram we
required a specialized tool and were pointed in the direction of a few different tools by a lecturer. We
first considered StarUML but quickly decided to use Draw.io as it allowed us to save designs straight
to​ ​Google​ ​Drive​ ​(our​ ​shared​ ​team​ ​workspace)​ ​and​ ​edit​ ​the​ ​UML​ ​diagram​ ​simultaneously.

The above diagram demonstrates how a player’s turn should proceed. The diagram strictly
shows​ ​what​ ​actions​ ​can​ ​occur​ ​from​ ​each​ ​phase​ ​without​ ​detailing​ ​how​ ​the​ ​actions​ ​are​ ​implemented.

A​ ​brief​ ​description​ ​about​ ​which​ ​actions​ ​are​ ​linked​ ​to​ ​each​ ​phase​ ​below:

● Start​ ​-​ ​Any​ ​action​ ​that​ ​occurs​ ​at​ ​the​ ​beginning​ ​of​ ​the​ ​player’s​ ​turn.
● Unit​ ​Phase​ ​-​ ​Any​ ​action​ ​concerning​ ​the​ ​production​ ​of​ ​units​ ​or​ ​non-player​ ​governed​ ​actions.
● Move​ ​Phase​ ​-​ ​Any​ ​action​ ​that​ ​concerns​ ​the​ ​moving​ ​of​ ​units​ ​by​ ​the​ ​player.
● Minigame​ ​Phase​ ​-​ ​Any​ ​action​ ​that​ ​concerns​ ​the​ ​minigame.
● Action​ ​Phase​ ​-​ ​Any​ ​action​ ​that​ ​concerns​ ​unit​ ​combat.
● End​ ​-​ ​Any​ ​action​ ​that​ ​will​ ​lead​ ​to​ ​the​ ​ending​ ​of​ ​a​ ​player’s​ ​turn.

Justification

When creating our overall structure, ​we decided that the architecture must accurately
describe the main mechanics and features of the game while maintaining a level of ambiguity. Initially
when preparing structure and conceptual models we opted for a more concrete model of the game
including methods, attributes and implementation specific-classes. However, we quickly realised that
this would stifle our ability to adapt to requirement change, and would limit our implementation to a
very specific structure. As a result, we produced a new model which maintained a acceptable level of
abstraction​ ​and​ ​represented​ ​the​ ​game​ ​in​ ​an​ ​implementation-agnostic​ ​way.

The following explains the existence of objects and the relations between them in diagram 1.
Square​ ​brackets​ ​contain​ ​reference​ ​identifiers​ ​to​ ​the​ ​​Requirements​​ ​document​ ​(Not​ ​‘References’).

The ​Game ​object provides a root for all other objects. All other major objects have a composition
relation with ​Game​; this means that upon the termination of game, all objects cease to exist as well.
The constraints upon the composition relations define features of the game in accordance with the
requirements:

● Player​:​ ​There​ ​are​ ​always​ ​4​ ​players​ ​for​ ​each​ ​game​ ​[N3].
● Map​:​ ​There​ ​is​ ​a​ ​single​ ​map​ ​in​ ​any​ ​one​ ​game​ ​[N4].

The ​Map ​object is an abstract construct for grouping, and constraining, geographical elements of the
game.​ ​For​ ​instance:

● Sector:​ ​​A​ ​map​ ​must​ ​have​ ​a​ ​number​ ​of​ ​sectors​ ​greater​ ​than​ ​4​ ​[N5].
● Landmark:​ ​​There​ ​must​ ​exist​ ​at​ ​least​ ​one​ ​​Landmark​ ​​for​ ​each​ ​player​ ​[N6].
● PVC​:​ ​There​ ​is​ ​only​ ​one​ ​single​ ​PVC​ ​at​ ​any​ ​time​ ​on​ ​the​ ​map​ ​[F2].

The ​Player ​object represents both human players and non-human, computer controlled, players.
Player​ ​​has​ ​two​ ​composition​ ​relations:

● Game:​​ ​The​ ​​Player​​ ​object​ ​is​ ​‘owned​ ​by’​ ​​Game​ ​​and​ ​is​ ​constrained​ ​to​ ​a​ ​strict​ ​4​ ​players​ ​[N3].
● Unit​:​ ​The​ ​​Player​​ ​object​ ​‘owns’​ ​a​ ​number​ ​of​ ​​Unit​ ​​objects​ ​[F6].

The​ ​​Player​ ​​object​ ​also​ ​has​ ​association​ ​relations​ ​with​ ​a​ ​number​ ​of​ ​other​ ​game​ ​objects:

● Sector:​​ ​A​ ​​Player​​ ​object​ ​may​ ​own​ ​of​ ​a​ ​number​ ​of​ ​sectors​ ​[F5].
● Knowledge​:​ ​A​ ​​Player​ ​​object​ ​may​ ​own​ ​a​ ​number​ ​of​ ​​Knowledge​​ ​resources​ ​[F5].
● Beer​:​ ​A​ ​​Player​ ​​object​ ​may​ ​own​ ​a​ ​number​ ​of​ ​​Beer​ ​​resources​ ​[F5].
● Unit​:​ ​A​ ​​Player​ ​​object​ ​may​ ​own​ ​a​ ​​Unit​​ ​object​ ​[F6].

Both the ​Non-Human Player object and the ​Human Player object are implementations of the ​Player
object. The ​Player object cannot exist on its own as it only serves as an interface to its
implementations.​ ​There​ ​exist​ ​two​ ​types​ ​of​ ​player​ ​due​ ​to​ ​requirement​ ​[F1].

The ​Sector ​object is a geographical element of the game which is ‘owned by’ the ​Map construct in a
composition relation. Each ​Sector ​object has an association relation to a number of other key in-game
objects:

● Landmark​:​ ​There​ ​must​ ​exist​ ​at​ ​most​ ​one​ ​​Landmark​ ​​for​ ​each​ ​​Sector​​ ​[N6].
● PVC​:​ ​There​ ​must​ ​exist​ ​at​ ​most​ ​one​ ​​PVC​ ​​for​ ​each​ ​​Sector​​ ​[F2].
● Player​:​ ​A​ ​​Sector​ ​​may​ ​be​ ​‘owned’​ ​by​ ​a​ ​single​ ​player,​ ​or​ ​not​ ​[F5].
● Unit​:​ ​There​ ​must​ ​exist​ ​at​ ​most​ ​one​ ​​Unit​ ​​for​ ​each​ ​​Sector​​ ​​[F5].

The ​Landmark ​object has a composition with the ​Map object. Each ​Landmark has an association
relation​ ​with​ ​the​ ​​Sector​​ ​object:

● Sector​:​ ​A​ ​​Landmark​​ ​must​ ​only​ ​be​ ​associated​ ​with​ ​one​ ​​Sector​​ ​[N6].

A​ ​​Landmark​​ ​​also​ ​has​ ​a​ ​composition​ ​relation​ ​to​ ​a​ ​​Resource​:

● Resource:​​ ​There​ ​must​ ​exist​ ​at​ ​least​ ​one​ ​​Resource​​ ​for​ ​each​ ​​Landmark​​ ​[N6].

The​ ​​PVC​ ​​object​ ​has​ ​a​ ​composition​ ​relation​ ​with​ ​the​ ​​Map​​ ​object:

● Map:​ ​​The​ ​​PVC​ ​​object​ ​is​ ​constrained​ ​to​ ​a​ ​single​ ​instance​ ​per​ ​map​ ​[F2].

The​ ​​PVC​ ​​object​ ​also​ ​has​ ​an​ ​association​ ​relation​ ​with​ ​the​ ​​Sector​ ​​object:

● Sector:​​ ​The​ ​​PVC​ ​​object​ ​can​ ​be​ ​associated​ ​with​ ​at​ ​most​ ​one​ ​sector​ ​at​ ​any​ ​time​ ​[F2].

The ​Unit ​object has two relations; the composition previously described with the ​Player object, and an
association​ ​with​ ​the​ ​​Sector​​ ​object:

● Sector:​ ​​A​ ​​Unit​ ​​object​ ​is​ ​associated​ ​with​ ​a​ ​single​ ​​Sector​​ ​[F5].

The​ ​​Resource​​ ​​object​ ​has​ ​a​ ​composition​ ​relation​ ​with​ ​the​ ​​Landmark​ ​​object:

● Landmark:​ ​​A​ ​​Resource​ ​​object​ ​is​ ​‘owned​ ​by’​ ​a​ ​​Landmark​​ ​object.​ ​There​ ​can​ ​be​ ​an
​ ​​ ​​ ​​ ​​ ​​ ​​ ​undefined,​ ​non-zero,​ ​number​ ​of​ ​resources​ ​per​ ​landmark​ ​[N6].

The​ ​​Resource​​ ​​object​ ​is​ ​implemented​ ​by​ ​both​ ​of​ ​​Beer​​ ​and​ ​​Knowledge​​ ​objects:
● Beer:​​ ​​Beer​ ​​implements​ ​​Resource​​ ​and​ ​inherits​ ​its​ ​constraints​ ​[N6].
● Knowledge:​​ ​​Knowledge​ ​​implements​ ​​Resource​​ ​and​ ​inherits​ ​its​ ​constraints​ ​[N6].

Both​ ​the​ ​​Beer​​ ​​object​ ​and​ ​the​ ​​Knowledge​​ ​​object​ ​have​ ​an​ ​association​ ​relation​ ​with​ ​​Player​:

● Player​:​ ​An​ ​implementation​ ​of​ ​​Resource​​ ​may​ ​be​ ​associated​ ​with​ ​a​ ​​Player​​ ​object​ ​[F5].

Non-standard​ ​notation

In our UML diagram, we use an “implements” arrow when we wish to denote that the parent
object cannot exist without extending to one of the child objects. For example, a “​Player​” cannot exist
without the object being a “​Human Player​” or a “​Non-Human Player​”. Both of the child nodes share
the same properties as “​Player​” but have specific additional properties that make them distinct from
each​ ​other.

References

[1] "UML Class Diagrams: Reference", ​Msdn.microsoft.com​, 2015. [Online]. Available:
https://msdn.microsoft.com/library/dd409437%28VS.140%29.aspx.​ ​[Accessed:​ ​07-​ ​Nov-​ ​2017].

