

Architecture

This document will cover an abstract representation of the proposed architecture as well as a

systematic justification for the architecture, explaining and justifying the individual components within
it. The following UML diagram describes the game in a way which does not constrain the architecture
to one specific implementation:

As an extension, we decided not to include audio and UI elements, although they are
expected to exist in our implementation.

We decided to create our abstract architecture using a UML 2.0 format. UML 2.0 was easy to
learn as we had access to useful lectures and documentation [1]. We found that UML 2.0 allowed us
to visualise our architecture in a clear yet concise manner. In order to design our UML diagram we
required a specialized tool and were pointed in the direction of a few different tools by a lecturer. We
first considered StarUML but quickly decided to use Draw.io as it allowed us to save designs straight
to Google Drive (our shared team workspace) and edit the UML diagram simultaneously.

The above diagram demonstrates how a player’s turn should proceed. The diagram strictly
shows what actions can occur from each phase without detailing how the actions are implemented.

A brief description about which actions are linked to each phase below:

● Start - Any action that occurs at the beginning of the player’s turn.
● Unit Phase - Any action concerning the production of units or non-player governed actions.
● Move Phase - Any action that concerns the moving of units by the player.
● Minigame Phase - Any action that concerns the minigame.
● Action Phase - Any action that concerns unit combat.
● End - Any action that will lead to the ending of a player’s turn.

Justification

When creating our overall structure, we decided that the architecture must accurately
describe the main mechanics and features of the game while maintaining a level of ambiguity. Initially
when preparing structure and conceptual models we opted for a more concrete model of the game
including methods, attributes and implementation specific-classes. However, we quickly realised that
this would stifle our ability to adapt to requirement change, and would limit our implementation to a
very specific structure. As a result, we produced a new model which maintained a acceptable level of
abstraction and represented the game in an implementation-agnostic way.

The following explains the existence of objects and the relations between them in diagram 1.
Square brackets contain reference identifiers to the Requirements document (Not ‘References’).

The Game object provides a root for all other objects. All other major objects have a composition
relation with Game; this means that upon the termination of game, all objects cease to exist as well.
The constraints upon the composition relations define features of the game in accordance with the
requirements:

● Player: There are always 4 players for each game [N3].
● Map: There is a single map in any one game [N4].

The Map object is an abstract construct for grouping, and constraining, geographical elements of the
game. For instance:

● Sector: A map must have a number of sectors greater than 4 [N5].
● Landmark: There must exist at least one Landmark for each player [N6].
● PVC: There is only one single PVC at any time on the map [F2].

The Player object represents both human players and non-human, computer controlled, players.
Player has two composition relations:

● Game: The Player object is ‘owned by’ Game and is constrained to a strict 4 players [N3].
● Unit: The Player object ‘owns’ a number of Unit objects [F6].

The Player object also has association relations with a number of other game objects:

● Sector: A Player object may own of a number of sectors [F5].
● Knowledge: A Player object may own a number of Knowledge resources [F5].
● Beer: A Player object may own a number of Beer resources [F5].
● Unit: A Player object may own a Unit object [F6].

Both the Non-Human Player object and the Human Player object are implementations of the Player
object. The Player object cannot exist on its own as it only serves as an interface to its
implementations. There exist two types of player due to requirement [F1].

The Sector object is a geographical element of the game which is ‘owned by’ the Map construct in a
composition relation. Each Sector object has an association relation to a number of other key in-game
objects:

● Landmark: There must exist at most one Landmark for each Sector [N6].
● PVC: There must exist at most one PVC for each Sector [F2].
● Player: A Sector may be ‘owned’ by a single player, or not [F5].
● Unit: There must exist at most one Unit for each Sector [F5].

The Landmark object has a composition with the Map object. Each Landmark has an association
relation with the Sector object:

● Sector: A Landmark must only be associated with one Sector [N6].

A Landmark also has a composition relation to a Resource:

● Resource: There must exist at least one Resource for each Landmark [N6].

The PVC object has a composition relation with the Map object:

● Map: The PVC object is constrained to a single instance per map [F2].

The PVC object also has an association relation with the Sector object:

● Sector: The PVC object can be associated with at most one sector at any time [F2].

The Unit object has two relations; the composition previously described with the Player object, and an
association with the Sector object:

● Sector: A Unit object is associated with a single Sector [F5].

The Resource object has a composition relation with the Landmark object:

● Landmark: A Resource object is ‘owned by’ a Landmark object. There can be an
 undefined, non-zero, number of resources per landmark [N6].

The Resource object is implemented by both of Beer and Knowledge objects:
● Beer: Beer implements Resource and inherits its constraints [N6].
● Knowledge: Knowledge implements Resource and inherits its constraints [N6].

Both the Beer object and the Knowledge object have an association relation with Player:

● Player: An implementation of Resource may be associated with a Player object [F5].

Non-standard notation

In our UML diagram, we use an “implements” arrow when we wish to denote that the parent
object cannot exist without extending to one of the child objects. For example, a “Player” cannot exist
without the object being a “Human Player” or a “Non-Human Player”. Both of the child nodes share
the same properties as “Player” but have specific additional properties that make them distinct from
each other.

References

[1] "UML Class Diagrams: Reference", Msdn.microsoft.com, 2015. [Online]. Available:
https://msdn.microsoft.com/library/dd409437%28VS.140%29.aspx. [Accessed: 07- Nov- 2017].

