

Architecture Report

This document contains the concrete architecture of our product, including an explanation
and justification of each of the key subcomponents which make up each class.

To model the concrete architecture for our program, we opted for a UML 2.0 class diagram
as they can accurately and concisely describe the specific structure of our product. The
methods highlighted in yellow are used for unit tests and therefore doesn’t contribute to the
normal execution of game.

As in our Architecture 1 document we used draw.io to produce the diagrams; with all data
collected from our code and design documents and entered in manually.

The following diagram shows the classes, method and attributes of all of the classes written
to implement our product, including the relationships between each.

For a high-resolution version of this diagram visit:
(https://sepr-team-margaret.github.io/content/UMLC2.png)

https://sepr-team-margaret.github.io/content/Arch1.pdf
https://sepr-team-margaret.github.io/content/Arch1.pdf
https://www.draw.io/
https://sepr-team-margaret.github.io/content/UMLC2.png

The following UML 2.0 Hierarchy diagram shows the inheritance and groupings of game
objects in our implementation. The meta-object ‘[Scene]’ represents the game scene as a
whole and doesn’t represent a specific, single game object. This diagram gives us a
representation of how our code is implemented.

Justification

Concrete Architecture Diagram

The concrete architecture diagram takes the form of a UML 2.0 Class diagram which includes
attributes and methods. In contrast to the abstract architecture diagram, our concrete architecture
diagram mirrors our implementation absolutely (attributes, methods, names, types, etc.) and leaves
no room for interpretation or ambiguity.

Building on the abstract architecture, our implementation follows the same relations and binding
relationships detailed in the Architecture Document.

The following explains the existence of objects and the relations between them in our concrete
architecture. Square brackets contain reference identifiers to the Requirements document (Not
‘References’). (Format is MethodName(Parameters) : Purpose - Justification.)

Most classes follow a standard implementation in which certain attributes are made private and can
only be accessed via “getter and setter” methods; to reduce document clutter, such methods will not
be mentioned. In addition Unity required methods such as ‘Update’ and ‘Initialize’ will be omitted from
the following:

The Game object provides a root for all other objects. All other major objects have a composition
relation with Game; this means that upon the termination of game, all objects cease to exist as well.
The Game object has methods:

● IsFinished() : Returns True if the game is over - Assumed that the game must have an end.
● CreatePlayers(int) : Initializes up to 4 human players - There exist human players, there

must be 4 players (either human or AI) [F1, N3]
● InitializeMap() : Initializes the map including initial player owned landmarks - Assumed player

starts at a landmark.
● NoUnitSelected() : Checks if any unit has been selected
● NextPlayer() : Allow the next player to take their turn - Follows Player Turn Sequence

Diagram.
● NextTurnState() : Moves player turn state to next turn state - Follows Player Turn Sequence

Diagram.
● EndTurn() : Sets turn state to end of turn - Assumed that players take consecutive turns.
● GetWinner() : Checks if any player has won - Assumed that the game must have an end.
● EndGame() : Ends instance of the game - Assumed that the game must have an end.

The Player object handles sector capture and unit spawning methods. It also contains a method that
assists in checking if the player has been eliminated. The Player object has methods:

● Capture(Sector) : Sets the sector as being owned by the player - Capture of sectors [F5]
● SpawnUnits() : Spawns a new unit for the player at all available landmarks - Unit spawning

[F6]
● OwnsLandmark() : Checks if the player owns any landmarks - Player can capture

landmarks, Sectors can have landmarks [F5, N6]

The Unit object handles unit movement, leveling and deletion of units. The Unit object has methods:

● MoveTo(Sector) : Moves the unit to the given sector - Necessary for sector capture [F5]
● SwapPlacesWith(Unit) : Swaps the sectors of two units
● LevelUp() : Increments a unit’s level by 1

https://sepr-team-margaret.github.io/content/Arch1U2.pdf]

● DestroySelf() : Deletes this instance of the unit

The Map object has no methods directly associated with it.

The Sector object handles unit movement availability and conflict methods. The Sector object has
methods:

● ApplyHighlight(float) : Highlights this instance of sector
● RevertHighlight(float) : Reverts highlight on this instance of sector
● ApplyHighlightAdjacent() : All adjacent sectors to this instance of sector is applied a

highlight
● RevertHighlightAdjacent() : Reverts highlight from all adjacent sectors from this instance of

sector
● ClearUnit() : Disassociates a unit with the sector - Involved with conflict, unit movement and

capture [F5]
● OnMouseUpAsButton() : Allows for selection of sectors
● MoveIntoUnoccupiedSector(Unit) : Handles unit movement into unoccupied sector -

Involved with capturing of sectors [F5]
● MoveIntoFriendlyUnit(Unit) : Handles initiation of unit swap - Involved with capturing of

sectors [F5]
● MoveIntoHostile(Unit) : Handles initiation of combat - Capture of sectors [F5]
● AdjacentSelectedUnit() : Helper to detect if movement is valid - Involved with capturing of

sectors [F5]

The Landmark object has attributes for resources associated with it but does not specifically have
any complex methods directly tied to it.

The PlayerUI object handles the display of the player status cards GUI element. The PlayerUI object
has methods:

● UpdateDisplay() : Recalculates the player’s current statistics
● Activate() : Signify the player’s turn - Assumed that players take consecutive turns.
● Deactivate() : Remove signification of the player’s turn

Updated Abstract Architecture

Our initial abstract architecture was built upon heavily when constructing our concrete architecture
with one only one minor change. Originally, landmarks were dependant on the existence of a game
map at the highest level but in our implementation we decided that landmarks should be reliant on a
sector’s existence because of the way landmarks are setup in our game. Also, in line with the
requirements of Assessment 2 we limited our scope to the map, conflict resolution and the allocation
of gang members. Therefore the game elements relating to the PVC are omitted in our diagrams. See
the updated diagram on our website.

Although our concrete architecture diagram is not directly affected by the change, our player turn
diagram was also updated to mirror implemented changes in the way the game plays. An updated
version of this diagram can be seen on our website. We decided to use this type of diagram because
it can very easily be implemented into the game and is very strict in defining what actions the player
should and should not be allowed to perform.

https://sepr-team-margaret.github.io/content/OOScope1U2.png
https://sepr-team-margaret.github.io/content/PTDiag2.png

